Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Redetermination of triethylammonium chloride in the space group *P*31c

Andrei V. Churakov^a* and Judith A. K. Howard^b

^aN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, 31 Leninskii Prospect, Moscow 119991, Russia, and ^bDepartment of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, England

Correspondence e-mail: churakov@igic.ras.ru

Received 2 June 2004 Accepted 11 June 2004 Online 10 July 2004

The structure of triethylammonium chloride, $C_6H_{16}N^+ \cdot Cl^-$, has been redetermined in the space group P31c. In contrast with previous refinements in the space group $P6_3mc$, no disorder of the triethylammonium cation was observed.

Comment

The structure of triethylammonium chloride has been reported four times to date (Hendricks, 1928; Genet, 1965; James *et al.*, 1985; Ilyukhin, 2000). All four structure determinations were made in the space group $P6_3mc$ (No. 186) and showed 'propeller'-like disorder of the cation (Fig. 1) caused by a crystallographic mirror plane. Two closely related models were used in the later refinements. In the first, both independent C atoms occupy general positions [12 (*d*): *x*, *y*, *z*; Genet, 1965; James *et al.*, 1985; Fig. 1(*a*)]. In the second, the methylene C atom lies on a general position, while the methyl C atom lies on the mirror plane [6 (*c*): *x*, \bar{x} , *z*; Ilyukhin, 2000; Fig. 1(*b*)].

Such disorder is a common feature of the Et₃NH⁺ cation. A total of 379 structures containing the triethylammonium cation are reported in the Cambridge Structural Database (CSD, Version 5.25; Allen, 2002). Of these, 126 structures are disordered (33.2%) and 76 structures (20.1%) possess the disordered cation. These figures are noticeably higher than the statistical appearance of disorder in the CSD (18.2%; Allen, 2002). The same type of disorder was observed previously for some other trialkylammonium derivatives with approximate C_{3v} symmetry, namely silatranes (Zaitseva *et al.*, 1996) and germatranes (Karlov et al., 2001). These two structures were refined in the space group Pnma. However, refinements in the lower-symmetry space group Pna21 retain the 'propeller'-like disorder, with occupancy ratios $\simeq 0.5:0.5$. On the contrary, the refinement of [NHEt₃][Sn(acac)Cl₄] in the lower-symmetry group led to an ordered cation, but was not found to be convincing (Korte et al., 1988). Against this background, we present here a further redetermination of the structure of triethylammonium chloride, (I) (Fig. 2).

A new data set for (I) was collected on a Bruker SMART CCD diffractometer at 120 K. The systematic absences were consistent with the space groups P31c (No. 159) and $P6_3mc$. Comparison of the $|F_o(hkl)|$ and $|F_o(hk\bar{l})|$ values points to $P6_3mc$, since their equality holds in $P6_3mc$ but not in P31c. However, the mean value of $|E^2 - 1|$ (0.678) was lower than expected for non-centrosymmetric crystals (Herbst-Irmer & Sheldrick, 1998).

At first, the structure was refined in the higher symmetry group $P6_{3}mc$. The model of Ilyukhin (2000) was found more appropriate and the final refinement converged to $R_1 = 0.054$ for 395 independent reflections with $I > 2\sigma(I)$ and 29 parameters. The highest difference peak was 0.55 e Å⁻³. However, the Flack (1983) parameter was found to be poorly determined [0.00 (39)], and the use of the racemic TWIN instruction did not led to any improvement of results. Subsequently, the structure was solved and refined in the space group P31c. The disorder of the cation disappeared and the refinement led to a residual $R_1 = 0.072$ for 661 reflections with $I > 2\sigma(I)$ and 47 parameters. The highest difference peak was 0.82 e Å⁻³.

The factor $K = \text{mean}(F_o^2)/\text{mean}(F_c^2)$ for low-intensity reflections was slightly greater than 1 and did not directly indicate the presence of twinning (Herbst-Irmer & Sheldrick,

Figure 1

The 'propeller'-like disorder of the Et_3NH^+ cation, viewed along the *c* axis, showing (*a*) the model of Genet (1965) and (*b*) the model of Ilyukhin (2000).

Figure 2

The ordered structure of the Et₃NH⁺ cation of (I), showing 50% probability displacement ellipsoids. The N-H···Cl hydrogen bond is denoted by a dashed line [symmetry codes: (i) 1 - y, 1 + x - y, z; (ii) y - x, 1 - x, z].

organic compounds

1998). Later, the TWIN operator relative to the mirror plane ($\overline{100}$, 110, 001) was included. This immediately resulted in the significant decrease of R_1 to 0.019 [48 parameters, Flack parameter 0.06 (6), highest difference peak 0.18 e Å⁻³]. The volume fraction of twin components converged to 0.5. Kahlenberg (1999) noted that, in such cases, standard Yeates and Britton statistical tests for merohedral twinning fail. Thus, the choice of the space group may be made on the basis of the final residual parameters only.

Experimental

Crystals of (I) were grown from a solution in ethanol-water (1:1). Long needles (15 mm) were cut into small pieces of suitable size.

Crystal data

$C_6H_{16}N^+ \cdot Cl^-$ $M_r = 137.65$ Trigonal, P31c a = 8.2542 (2) Å c = 6.9963 (2) Å V = 412.81 (2) Å ³ Z = 2 $D_x = 1.107$ Mg m ⁻³	Mo K α radiation Cell parameters from 3089 reflections $\theta = 2.8-30.0^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 120 (2) K Block, colourless $0.40 \times 0.10 \times 0.10 \text{ mm}$	
Data collection		
Bruker SMART CCD area-detector diffractometer ω scans 3185 measured reflections 665 independent reflections 661 reflections with $I > 2\sigma(I)$	$\begin{aligned} R_{\text{int}} &= 0.014 \\ \theta_{\text{max}} &= 28.0^{\circ} \\ h &= -5 \rightarrow 10 \\ k &= -10 \rightarrow 9 \\ l &= -9 \rightarrow 9 \end{aligned}$	
Refinement on F^2	$w = 1/[\sigma^2(F_2) + (0.0415P)^2]$	
$R[F^2 > 2\sigma(F^2)] = 0.019$	where $P = (F_o^2 + 2F_c^2)/3$	
$wR(F^2) = 0.047$	$(\Delta/\sigma)_{\rm max} < 0.001$	
S = 1.04	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$	
665 reflections	$\Delta \rho_{\rm min} = -0.09 \ {\rm e} \ {\rm \AA}^{-3}$	
48 parameters	Absolute structure: Flack (1983)	
All H-atom parameters refined	with 297 Friedel pairs	
	Flack parameter $= 0.06$ (6)	

The ammonium H atom was found from a difference Fourier synthesis. Other H atoms were placed in calculated positions. Both positional and displacement parameters for all H atoms were refined.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve

Table 1

Selected geometric parameters (Å, °).

N1-C2	1.5053 (13)	C1-C2	1.5160 (18)
$C2 - N1 - C2^{i}$	111.18 (11)	N1-C2-C1	112.23 (13)
Symmetry code: (i) 1	-y, 1+x-y, z.		

structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Bruker, 2000); software used to prepare material for publication: *SHELXTL-Plus*.

The authors thank Dr S. Z. Vatsadze for providing crystals of (I). AVC is grateful to the Royal Society of Chemistry for an RSC Journal Grant for International Authors.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1163). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Bruker (1998). *SMART*. Version 5.049. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SHELXTL-Plus. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT. Version 6.04. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Genet, F. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 463-482.
- Hendricks, S. B. (1928). Z. Kristallogr. 67, 472-481.
- Herbst-Irmer, R. & Sheldrick, G. M. (1998). Acta Cryst. B54, 443-449.
- Ilyukhin, A. B. (2000). Private communication to the Cambridge Structural Database, refcode ETAMCL02. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
- James, M. A., Cameron, T. S., Knop, O., Neuman, M. & Falk, M. (1985). Can. J. Chem. 63, 1750–1758.
- Kahlenberg, V. (1999). Acta Cryst. B55, 745-751.
- Karlov, S. S., Shutov, P. L., Churakov, A. V., Lorberth, J. & Zaitseva, G. S. (2001). J. Organomet. Chem. 627, 1–5.
- Korte, L., Mootz, D., Scherf, M. & Wiebcke, M. (1988). Acta Cryst. C44, 1128– 1130.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Zaitseva, G. S., Karlov, S. S., Churakov, A. V., Avtonomov, E. V., Lorberth, J. & Hertel, D. (1996). J. Organomet. Chem. 523, 221–225.